

Integrated Power Hybrid IC for Appliance Motor Drive Applications

IRAMX20UP60A •MOTION [™]Series 20A, 600V

with open Emitter Pins

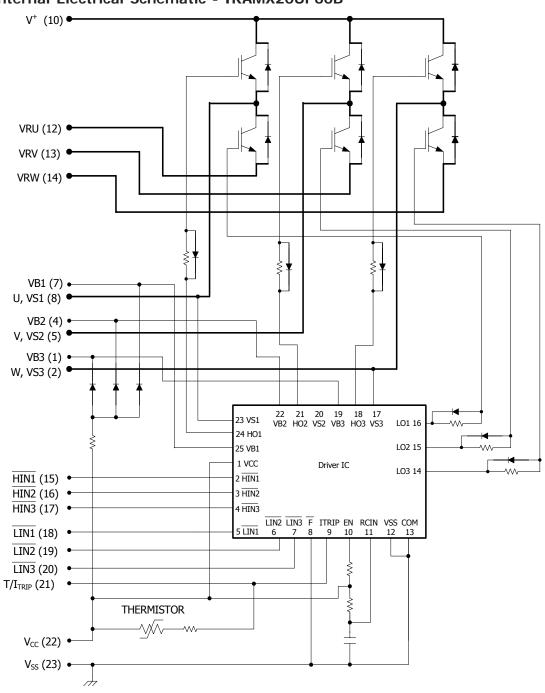
Description

International Rectifier's IRAMX20UP60A is a 20A, 600V Integrated Power Hybrid IC for Appliance Motor Drives applications such air conditioning systems and compressor drivers as well as in light industrial application. IR's technology offers an extremely compact, high performance AC motor-driver in a single isolated package to simplify design.

This advanced HIC is a combination of IR's low $V_{\text{CE(on)}}$ Punch-Through IGBT technology and the industry benchmark 3 phase high voltage, high speed driver in a fully isolated thermally enhanced package. A built-in temperature monitor and input logic protection function, along with the short-circuit rated IGBTs and integrated under-voltage lockout function, deliver high level of protection and fail-safe operation. Using a Single in line package (SiP2) with heatspreader for the power die along with full transfer mold structure minimizes PCB space and resolves isolation problems to heatsink. UL certified.

Features

- Integrated Gate Drivers
- Temperature Monitor
- Overcurrent shutdown
- Fully Isolated Package
- Low VCE (on) Non Punch Through IGBT Technology.
- Undervoltage lockout for all channels
- Matched propagation delay for all channels
- 5V Schmitt-triggered input logic
- Cross-conduction prevention logic
- Lower di/dt gate driver for better noise immunity
- Motor Power range 0.75~1.5kW / 85~253 Vac
- Isolation 2000V_{RMS} min
- UL certificate number E252584


Absolute Maximum Ratings

Parameter	Description	Max. Value	Units
V _{CES} / V _{RRM}	IGBT/Diode Blocking Voltage	600	V
V ⁺ Positive Bus Input Voltage		450	V
I _O @ T _C =25°C	RMS Phase Current (Note 1)	20	
I _O @ T _C =100°C RMS Phase Current (Note 1)		10	Α
I _O Pulsed RMS Phase Current (Note 2)		35	
F _{PWM} PWM Carrier Frequency		20	kHz
P _d Power dissipation per IGBT @ T _C =25°C		38	W
V _{ISO} Isolation Voltage (1min)		2000	V_{RMS}
T _J (IGBT & Diodes) Operating Junction temperature Range		-40 to +150	°C
T _J (Driver IC) Operating Junction temperature Range		-40 to +150	٠.
T Mounting torque Range (M3 screw)		0.5 to 0.6	Nm

Note 1: Sinusoidal Modulation at V^+ =400V, T_3 =150°C, F_{PWM} =16kHz, Modulation Depth=0.8, PF=0.6, See Figure 3. Note 2: t_P <100ms; T_C =25°C; F_{PWM} =16kHz.

Internal Electrical Schematic - IRAMX20UP60B

IRAMX20UP60A

Absolute Maximum Ratings (Continued) All voltages are absolute referenced to COM.

Symbol	Parameter	Min	Max	Units	Conditions
I_{BDF}	Bootstrap Diode Peak Forward Current		4.5	Α	t _P = 10ms, T _J = 150°C, T _C =100°C
P _{BR Peak}	Bootstrap Resistor Peak Power (Single Pulse)		25.0	W	$t_P=100\mu s$, $T_C=100^{\circ}C$ ESR / ERJ series
V _{S1,2,3}	High Side floating supply offset voltage	V _{B1,2,3} - 25	V _{B1,2,3} +0.3	٧	
V _{B1,2,3}	High Side floating supply voltage	-0.3	600	٧	
V _{CC}	Low Side and logic fixed supply voltage	-0.3	20	٧	
V _{IN}	Input voltage LIN, HIN, T/I _{Trip}	-0.3	Lower of (V _{SS} +15V) or V _{CC} +0.3V	٧	

Inverter Section Electrical Characteristics $@T_J = 25^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600			٧	V _{IN} =5V, I _C =250μA
$\Delta V_{(BR)CES}$ / ΔT	Temperature Coeff. Of Breakdown Voltage		0.3		V/°C	V _{IN} =5V, I _C =1.0mA (25°C - 150°C)
V	Collector-to-Emitter Saturation		1.75	2.15	V	$I_C=10A$, $V_{CC}=15V$
V _{CE(ON)}	Voltage		2.10	2.60	V	I _C =10A, V _{CC} =15V, T _J =150°C
I _{CES}	Zero Gate Voltage Collector Current		5	80	нΑ	V _{IN} =5V, V ⁺ =600V
			165			V _{IN} =5V, V ⁺ =600V, T _J =150°C
V _{FM}	Diada Faruard Valtaga Dran		1.90	2.60	V	I _C =10A
V FM	Diode Forward Voltage Drop		1.50	2.20	V	I _C =10A, T _J =150°C
V_{BDFM}	Bootstrap Diode Forward Voltage Drop			1.25	V	I _F =1A
				1.10	V	I _F =1A, T _J =125°C
R _{BR}	Bootstrap Resistor Value		22		Ω	
$\Delta R_{BR}/R_{BR}$	Bootstrap Resistor Tolerance			±5	%	

IRAMX20UP60A

Inverter Section Switching Characteristics @ T_J= 25°C

Symbol	Parameter	Min	Тур	Max	Units	Conditions			
E _{ON}	Turn-On Switching Loss		390	490		I _C =10A, V ⁺ =400V			
E _{OFF}	Turn-Off Switching Loss		150	200	1	V _{CC} =15V, L=2mH			
E _{TOT}	Total Switching Loss		540	690	μJ	Energy losses include "tail" and diode reverse recovery			
E _{REC}	Diode Reverse Recovery energy		35	70		diode reverse recovery			
t _{RR}	Diode Reverse Recovery time		100		ns	See CT1			
E _{ON}	Turn-on Switching Loss		620	780		I _C =10A, V ⁺ =400V			
E _{OFF}	Turn-off Switching Loss		305	400		V _{CC} =15V, L=2mH, T _J =150°C Energy losses include "tail" and diode reverse recovery			
E _{TOT}	Total Switching Loss		925	1180	μJ				
E _{REC}	Diode Reverse Recovery energy		65	135		diode reverse recovery			
t _{RR}	Diode Reverse Recovery time		130		ns	See CT1			
Q_G	Turn-On IGBT Gate Charge		56	84	nC	I _C =15A, V ⁺ =400V, V _{GE} =15V			
RBSOA	Reverse Bias Safe Operating Area	FL	ILL SQUA	RE		T_J =150°C, I_C =10A, V_P =600V V^+ = 450V V_{CC} =+15V to 0V See CT3			
SCSOA	Short Circuit Safe Operating Area	10			μs	T_J =150°C, V_P =600V, V^+ = 360V, V_{CC} =+15V to 0V See CT2			
I _{CSC}	Short Circuit Collector Current		140		А	T_J =150°C, V_P =600V, t_{SC} <10 μ s V ⁺ = 360V, V_{GE} =15V V_{CC} =+15V to 0V See CT2			

Recommended Operating Conditions Driver Function

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommende conditions. All voltages are absolute referenced to COM. The V_S offset is tested with all supplies biased at 15V differential (Note 3)

Symbol	Definition	Min	Max	Units		
V _{B1,2,3}	High side floating supply voltage	V _S +12	V _S +20	V		
V _{S1,2,3}	High side floating supply offset voltage	Note 4	450	V		
V _{CC}	Low side and logic fixed supply voltage	12	20	V		
V _{T/ITRIP}	T/I _{TRIP} input voltage	V _{SS}	V _{SS} +5	\		
V _{IN}	Logic input voltage LIN, HIN	V _{SS}	V _{SS} +5	٧		

Note 3: For more details, see IR21365 data sheet

Note 4: Logic operational for V_s from COM-5V to COM+600V. Logic state held for V_s from COM-5V to COM- V_{BS} . (please refer to DT97-3 for more details)

Static Electrical Characteristics Driver Function

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$)=15V, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to COM and are applicable to all six channels. (Note 3)

Symbol	Definition	Min	Тур	Max	Units
V _{IH}	Logic "0" input voltage				V
V _{IL}	Logic "1" input voltage			0.8	V
V _{CCUV+} , V _{BSUV+}	V _{CC} and V _{BS} supply undervoltage Positive going threshold	10.6	11.1	11.6	V
V _{CCUV-} , V _{BSUV-}	V _{CC} and V _{BS} supply undervoltage Negative going threshold	10.4	10.9	11.4	V
V _{CCUVH} , V _{BSUVH}	V _{CC} and V _{BS} supply undervoltage lock-out hysteresis		0.2		V
V _{IN, Clamp}	Input Clamp Voltage (HIN, LIN, T/I _{TRIP}) I _{IN} =10μA	4.9	5.2	5.5	V
I_{QBS}	Quiescent V _{BS} supply current V _{IN} =0V			165	μΑ
I_{QCC}	Quiescent V _{CC} supply current V _{IN} =0V			3.35	mA
I_{LK}	Offset Supply Leakage Current			60	μΑ
I_{IN+}	Input bias current V _{IN} =5V		200	300	μΑ
I _{IN-}	Input bias current V _{IN} =0V		100	220	μΑ
T/I _{TRIP+}	T/I _{TRIP} bias current V _{ITRIP} =5V		30	100	μΑ
T/I _{TRIP-}	T/I _{TRIP} bias current V _{ITRIP} =0V		0	1	μΑ
V(T/I _{TRIP})	T/I _{TRIP} threshold Voltage	3.85	4.30	4.75	V
V(T/I _{TRIP} ,HYS)	T/I _{TRIP} Input Hysteresis		0.07		V

Dynamic Electrical Characteristics

Driver only timing unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Units	Conditions
T _{ON}	Input to Output propagation turn- on delay time (see fig.11)		600		ns	V _{CC} =V _{BS} = 15V, I _C =10A, V ⁺ =400V
T _{OFF}	Input to Output propagation turn- off delay time (see fig. 11)		700		ns	VCC-VBS- 13V, 1C-10A, V -400V
T _{FLIN}	Input Filter time (HIN, LIN)	100	200		ns	V _{IN} =0 & V _{IN} =5V
T _{BLT-Trip}	I _{TRIP} Blancking Time	100	150		ns	V _{IN} =0 & V _{IN} =5V
D _T	Dead Time (V _{BS} =V _{DD} =15V)	220	290	360	ns	V _{BS} =V _{CC} =15V
M _T	Matching Propagation Delay Time (On & Off)		40	75	ns	V_{CC} = V_{BS} = 15V, external dead time> 400ns
T _{T/ITrip}	T/I _{Trip} to six switch to turn-off propagation delay (see fig. 2)			1.75	μs	V _{CC} =V _{BS} = 15V, I _C =10A, V ⁺ =400V
т	Post T/I _{Trip} to six switch to turn-		7.7		me	T _C = 25°C
T _{FLT-CLR}	off clear time (see fig. 2)		6.7		ms	T _C = 100°C